Laguerre Polynomials in Several Hypercomplex Variables and Their Matrix Representation

نویسندگان

  • H. R. Malonek
  • Graça Tomaz
چکیده

Recently the creation matrix, intimately related to the Pascal matrix and its generalizations, has been used to develop matrix representations of special polynomials, in particular Appell polynomials. In this paper we describe a matrix approach to polynomials in several hypercomplex variables based on special block matrices whose structures simulate the creation matrix and the Pascal matrix. We apply the approach to hypercomplex Laguerre polynomials, although it can be used for other Appell sequences, too.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A new Extension of Gegenbauer Matrix Polynomials and Their Properties

The aim of this paper is to define and study of the Gegenbauer matrix polynomials of two variables. An explicit representation, a three-term matrix recurrence relations, differential recurrence relations and hypergeometric matrix representation for the Gegenbauer matrix polynomials of two variables are given. The Gegenbauer matrix polynomials are solutions of the matrix differential equations a...

متن کامل

The Operational matrices with respect to generalized Laguerre polynomials and their applications in solving linear dierential equations with variable coecients

In this paper, a new and ecient approach based on operational matrices with respect to the gener-alized Laguerre polynomials for numerical approximation of the linear ordinary dierential equations(ODEs) with variable coecients is introduced. Explicit formulae which express the generalized La-guerre expansion coecients for the moments of the derivatives of any dierentiable function in termsof th...

متن کامل

Monogenic Generalized Laguerre and Hermite Polynomials and Related Functions

Abstract. In recent years classical polynomials of a real or complex variable and their generalizations to the case of several real or complex variables have been in a focus of increasing attention leading to new and interesting problems. In this paper we construct higher dimensional analogues to generalized Laguerre and Hermite polynomials as well as some based functions in the framework of Cl...

متن کامل

Application of Laguerre Polynomials for Solving Infinite Boundary Integro-Differential Equations

In this study‎, ‎an efficient method is presented for solving infinite boundary integro-differential equations (IBI-DE) of the second kind with degenerate kernel in terms of Laguerre polynomials‎. ‎Properties of these polynomials and operational matrix of integration are first presented‎. ‎These properties are then used to transform the integral equation to a matrix equation which corresponds t...

متن کامل

On Generalized Hypercomplex Laguerre-Type Exponentials and Applications

In hypercomplex context, we have recently constructed Appell sequences with respect to a generalized Laguerre derivative operator. This construction is based on the use of a basic set of monogenic polynomials which is particularly easy to handle and can play an important role in applications. Here we consider Laguerre-type exponentials of order m and introduce Laguerre-type circular and hyperbo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011